
Statistical Analysis 
of Time-Repeated Measurements on 
each Experimental Subject



Multiple Measurements on Same Subject

When Measurements are Separated by enough Time to be
Uncorrelated
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Multiple Measurements on Same Subject

When Measurements are near enough in Time to be 
correlated

n measurements on the same subject nxnnn
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Multiple Measurements on Same Subject

When Measurements are near enough in Time to be 
Correlated [ Simplified Notation:  ρ indicates correlation ]

n measurements on the same subject nxn
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Correlation Influences Hypothesis Tests

zindep= 
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If positive correlation is present and 
ignored, a treatment effect can be 
incorrectly declared significant.

Divisor: n for zindep

neffective for Zcorr



In Presence of Correlation
Need Larger Sample Size to be as “Effective” 

“…positive autocorrelation results in ‘loss 
of information’.

])1(1[ ρ−+
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corr

corr
effective n

nn

neffective = uncorrelated 
(independent) samples

ncorr = correlated (dependent) samples

where ρ is autocorrelation 

with 0 ≤ ρ ≤ 1.



Multiple Measurements on Same Subject

Focus is on modeling 
Small-Scale Variability 

when there is dependence or correlation
among observed data values.

Correlation
implies  

Σnxn is not diagonal
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Primary Goal of Applied Statistics

to create a statistical model

Use observed Y values
together with scientific knowledge

and obtain accurate predictions ( Ŷ )

of unobserved Y values
Ŷ =



To Predict Y: First Model “Large-Scale” Trends

Y  = +   ε*

Ŷ
where
Y is predicted by fitting a ‘large-scale’ trend to the observed data.

ε*     is data variability remaining after the model is fit.



Refine the Model to Predict Y
Model ‘Small-Scale’ Variability

ε*

Y = + + ε

μ Σnxn σ2∙Inxn

Correlation Independence



Decomposing the Data Variability
ANOVA Terminology

Large-Scale

Fixed Effects
Means

• Deterministic Functions
• Regressors(Covariates)
• Treatments

Small-Scale
All ‘residual’ variation

(eg., a raindrop on water surface)

Random Effects
Variance Components

• Variances
• Covariances/Correlations



Various Ways to Write 
Components of the General Linear Model (GLM)

Y = Large-Scale + Small-Scale

Variation Variation

Y = Fixed Effects + Random Effects

Y = Mean &/or + Variances &

Covariates Covariances

Ynx1 = Xnxp∙βpx1 + εnx1

Ynx1 = μnx1 + εnx1

Ynx1 = ŷnx1 + εnx1



The General Linear Model (GLM)
Assumptions – the i.i.d. Mantra

Observed Data - Model Prediction = Model Error
ynx1                     - ŷnx1 = εnx1

Classical GLM assumptions: εi are i.i.d.

εi ~ Normal ( 0, σ2
ε )

• independent( No correlation among the n data values ) 
• identically distributed



What is the “Covariance Structure” for your 
Specific Model?

It is seldom true that each different pair of repeated measurements 
has a different covariance than any other pair.

Typically, there is a simpler
“pattern” of covariance.
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What is the “Covariance Structure” for your 
Specific Model?

Repeated measurements on the same subject 
typically share some covariance These will not be zero

Modeling this diagonal (independence)
“covariance structure”
will produce incorrect
hypothesis test results
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Typical Covariance Structures 
for Multiple Measurements on Same Subject

All pairs of measurements are equally correlated

Compound Symmetry

In SAS:  Type= CS

4 measurements on the same subject
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Typical Covariance Structures 
for Multiple Measurements on Same Subject

Covariance between pairs of measurements 
is a function of their distance (in time)

Equi-Distant Times: 1       2       3       4

Toeplitz

In SAS:  Type= TOEP
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Typical Covariance Structures 
for Multiple Measurements on Same Subject

Covariance between pairs of measurements 
is a specific [ ρ ] function of their distance (in time)

Equi-Distant Times: 1            2            3            4

1st-Order Auto-Regressive

In SAS:  Type= AR(1)
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Typical Covariance Structures 
for Multiple Measurements on Same Subject

When time measurements 
NOT EQUALLY SPACED use

1st-Order Ante-Dependence Type=ANTE(1)
or

Spatial Exponential Type=SP(EXP)



Typical Covariance Structures 
for Multiple Measurements on Same Subject

When variances are heterogeneous
(i.e., different magnitudes) across times  

SAS Proc MIXED
Covariance Structures
include:

Type= CSH, TOEPH, ARH(1) 44
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How Do I Check that the Chosen Covariance 
Structure Fits my Data Well? 

1) Likelihood Ratio Test – significance indicates
chosen Covariance Structure fits data better than 
“independence” (i.e., diagonal)

2) Smallest value for AICC fit statistic
–indicates “best” fit                  



Each Cow receives 1 of 4 Treatments and 
is Measured on Days 3, 6, 9 and 21



Covariance Structure [General Notation] 
for 4 Repeated Measurements (Days 3, 6, 9, 21) on each Cow (k)



Goodness-of-Fit Summary
Which Covariance Structure Fit the Data Best?

Chosen Type=
Proc Mixed 
Repeated Statement

Covariance Structure AICC Fit 
Statistic

# of Covariance Parameters 
Estimated

un Unstructured 407.2 10

vc or    simple Variance Components
(Independence)

492.2 1

cs Compound Symmetry 444.4 2

csh Heterogeneous
Compound Symmetry

449.6 5

ante(1) 1st-Order
Ante-Dependence

401.5 7

√ sp(exp) Spatial Exponential 411.5 2



Two Covariance Parameters
Estimated by SP(exp) 

The values in each element of a cow’s covariance matrix is calculated 
by plugging the above 2 estimates into the below formula.



Estimated SP(exp) Covariance Structure
for each Cow

Note:    𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 = 1033.64 has been factored out.

Exponent: Numerator = Day difference. Denominator = 𝜎𝜎𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸)(𝐷𝐷𝐷𝐷𝐷𝐷)
2 = 92.88 



Estimated SP(exp) Covariance Structure
for each Cow

The numeric estimate illustrate how measurements at two times share less 
covariance when there is greater time between measurements.

Days:            3                       6                      9                      21



The Model’s Covariance Matrix 
has an 4x4 SP(exp) Covariance on the Diagonal

for each Cow

Measurements on different cows are independent; indicated by zero covariance.
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