Statistical Analysis
of Time-Repeated Measurements on
each Experimental Subject




Multiple Measurements on Same Subject

When Measurements are Separated by enough Time to be

Uncorrelated
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Multiple Measurements on Same Subject

When Measurements are near enough in Time to be

correlated
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Multiple Measurements on Same Subject

When Measurements are near enough in Time to be

Correlated | Simplified Notation: p indicates correlation |
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n measurements on the same subject



Correlation Influences Hypothesis Tests
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If positive correlation is present and
ignored, a treatment effect can be
incorrectly declared significant.
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In Presence of Correlation
Need Larger Sample Size to be as “Effective”

“...positive autocorrelation results in ‘loss
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Multiple Measurements on Same Subject

Focus is on modeling
Small-Scale Variability

when there is dependence or correlation
among observed data values.
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Primary Goal of Applied Statistics

Use observed Y values
together with scientific knowledge

to create a statistical model

and obtain accurate predictions (V)

of unobserved Y values
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To Predict Y: First Model “Large-Scale” Trends

where
Y is predicted by fitting a ‘large-scale’ trend to the observed data.

e* is data variability remaining after the model is fit.



Refine the Model to Predict Y
Model ‘Small-Scale’ Variability
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Decomposing the Data Variability

ANOVA Terminology

Large-Scale Small-Scale

All ‘residual’ variation
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(eg., a raindrop on water surface)

Fixed Effects Random Effects
Means Variance Components
e Deterministic Functions e Variances
e Regressors(Covariates) e Covariances/Correlations

* Treatments



Various Ways to Write
Components of the General Linear Model (GLM)

Y = Large-Scale + Small-Scale
Variation Variation
Y = Fixed Effects + Random Effects
Y = Mean &/or + Variances &
Covariates Covariances
Ynx1 = anp'Bpxl + Enxl

Ynxl = Mnxl + EnXl




The General Linear Model (GLM)
Assumptions — the 1.1.d. Mantra

Observed Data - Model Prediction

Ynx1 - Ynx1

Model Error
€

nx1

Classical GLM assumptions:  ¢; are I.1.d.

g; ~ Normal ( 0, 02,)

e independent( No correlation among the n data values )
e identically distributed




What is the “Covariance Structure” for your
Specific Model?

It is seldom true that each different pair of repeated measurements

has a different covariance than any other pair.
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What is the “Covariance Structure” for your
Specific Model?

Repeated measurements on the same subject

typically share some covariance These will not be zero
Modeling this diagonal (independence) /02 0 40
&
“covariance structure” 0 02 0/
. . . B g
will produce incorrect r.=o. -l .=/ .

hypothesis test results
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n measurements on the same subject



Typical Covariance Structures

for Multiple Measurements on Same Subject

All pairs of measurements are equally correlated
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4 measurements on the same subject



Typical Covariance Structures

for Multiple Measurements on Same Subject

Covariance between pairs of measurements
is a function of their distance (in time)

Equi-Distant Times: 1 2 3 4
) . )
Toeplitz 0, 0, 0, O3
2
106, 06, 0 O,
In SAS: Type= TOEP Ly = :
0, 0, 0, 0
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. \ O-3
4 measurements on the same subject



Typical Covariance Structures

for Multiple Measurements on Same Subject

Covariance between pairs of measurements
is a specific [ p | function of their distance (in time)

Equi-Distant Times: 1 2 3 4
- . 2 2 2 2 3 2
15t-Order Auto-Regressive 6, po, po, po,
2 2 2 2 2
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4 measurements on the same subject



Typical Covariance Structures

for Multiple Measurements on Same Subject

When time measurements
NOT EQUALLY SPACED use

15t-Order Ante-Dependence  Type=ANTE(1)

or

Spatial Exponential Type=SP(EXP)
B




Typical Covariance Structures

for Multiple Measurements on Same Subject

When variances are heterogeneous

(i.e., different magnitudes) across times
SAS Proc MIXED

Covariance Structures
include: y | 92
4x4

Type= CSH, TOEPH, ARH(1) ? ? 7 o

4x4




How Do | Check that the Chosen Covariance
Structure Fits my Data Well?

1) Likelihood Ratio Test — significance indicates
chosen Covariance Structure fits data better than
“independence” (i.e., diagonal)

2) Smallest value for AICC fit statistic
—indicates “best” fit



Each Cowreceives 1 of 4 Treatments and
IS Measured on Days 3, 6, 9 and 21

Experiment Layout:

(IA=0, SC=20) (IA=20, SC=20) (IA=20, SC=0) (IA=0, SC=0)

Whole-Plot
Factor(Cow): 1 8 10 15 2 7 9 16 3 5 12 14 4 6 11 13

3 | 258 192 234 256 || 233 152 186 221 || 260 228 224 197 || 269 196 202 212

Subplot ¢ 1551 185 233 249 || 236 148 186 219 255 221 217 196 || 258 191 202 212

Factor
(Days) 9 245 183 228 237 232 144 185 225 245 221 209 190 249 181 202 212

21 | 242 181 219 247 | 219 139 167 201 || 249 214 201 281 || 253 195 189 219




Covariance Structure |General Notation]
for 4 Repeated Measurements (Days 3, 6, 9, 21) on each Cow (k)
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Goodness-of-Fit Summary
Which Covariance Structure Fit the Data Best?

Chosen | Type= Covariance Structure | AICCFit # of Covariance Parameters

Proc Mixed Statistic Estimated

Repeated Statement

un Unstructured 407.2 10

VC or simple Variance Components 492.2 1
(Independence)

cs Compound Symmetry 444 .4 2

csh Heterogeneous 449.6 5
Compound Symmetry

ante(1) 15t-Order 401.5 7

Ante-Dependence

v sp(exp) Spatial Exponential 411.5 2



Two Covariance Parameters
Estimated by SP(exp)

Cov Parm  Subject Estimate
0% pexpybayy  COW(ia*sc) 92.88
0% Resid 1033.64

The values in each element of a cow’s covariance matrix is calculated
by plugging the above 2 estimates into the below formula.

Cov ( Day; , Day; ) = 0’ Resia ( €Xp[-D(i , j) /OZSP(EKP)(DHF} I)

where D(1,7)=|1-3] and 1,7=3,6,9, or 21



Estimated SP(exp) Covariance Structure
for each Cow

Day 3 Day 6 Day 9 Day 21
Day 3 - 1 o —3/92.88 2 —6592 88 E—lamz_gg X
R, s = Ciu = Da}{ 333.64 e 1 e
Day 9 E—ﬁf 02 &8 & -3/92.83 1 E_u 107 29
Day 21 _E-IEJ'QE.EE E—IEIQE.E E—IEIQE.EE 1 I

Note: 0/.¢;quq= 1033.64 has been factored out.

Exponent: Numerator = Day difference. Denominator = aszp(Exp)(Day)= 92.88



Estimated SP(exp) Covariance Structure
for each Cow

Days: 3 6 9 21

| 9682 9374 .8238
9682 1 9682 8509
9374 9682 1 8788
8238 8509 8788 1

1033.64 -

ddxd

The numeric estimate illustrate how measurements at two times share less
covariance when there is greater time between measurements.



The Model’s Covariance Matrix
has an 4x4 SP(exp) Covariance on the Diagonal
for each Cow

/C4x4 O4x4 O4x4\

O4x4 C4x4 O4x4
Var(Y64x1)64x64 — R64x64 — : : : :

\O4x4 Opea C4x4/64x64

Measurements on different cows are independent; indicated by zero covariance.
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