Statistical Analysis of Time-Repeated Measurements on each Experimental Subject

When Measurements are Separated by enough Time to be

Uncorrelated

$$\Sigma_{nxn} = \sigma_{\varepsilon}^{2} \cdot I_{nxn} = \begin{pmatrix} \sigma_{\varepsilon}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{\varepsilon}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{\varepsilon}^{2} \end{pmatrix}_{nxn}$$

When Measurements are near enough in Time to be correlated

$$\Sigma_{nxn} = \begin{pmatrix} \sigma_{\varepsilon}^{2} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{\varepsilon}^{2} & \cdots & \sigma_{21} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{\varepsilon}^{2} \end{pmatrix}_{nxn}$$

When Measurements are near enough in Time to be

Correlated [Simplified Notation: ρ indicates correlation]

$$\Sigma_{nxn} = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}_{nxn}$$

Correlation Influences Hypothesis Tests

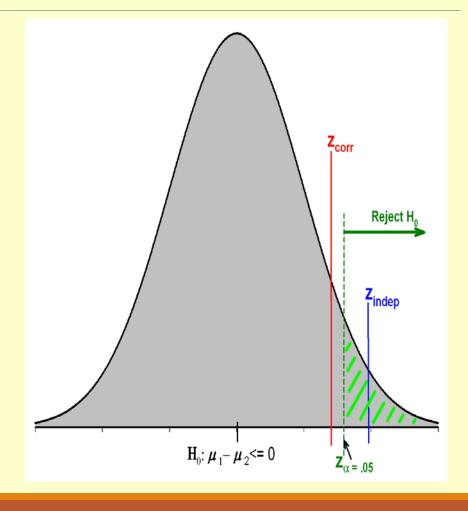
$$\mathbf{Z}_{\text{indep}} = \frac{x_1 - x_2}{\sigma \cdot \sqrt{\frac{2}{n}}}$$

$$\mathbf{Z}_{\text{corr}} = \frac{\overline{x_1 - x_2}}{\sigma \cdot \sqrt{\frac{2\{1 + (n-1) \cdot \rho\}}{n}}}$$

If positive correlation is present and ignored, a treatment effect can be incorrectly declared significant.

Divisor: *n* for z_{indep}

 $n_{\text{effective}}$ for Z_{corr}



In Presence of Correlation Need Larger Sample Size to be as "Effective"

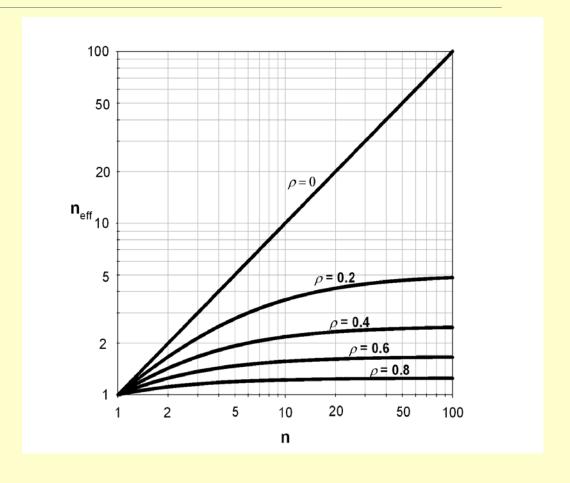
"...positive autocorrelation results in 'loss of information'.

$$n_{effective} = \frac{n_{corr}}{[1 + (n_{corr} - 1)\rho]}$$

n_{effective} = uncorrelated
 (independent) samples

 n_{corr} = correlated (dependent) samples

where ρ is autocorrelation with $0 \le \rho \le 1$.



Focus is on modeling

Small-Scale Variability

when there is dependence or correlation among observed data values.

Correlation

implies

 Σ_{nxn} is not diagonal

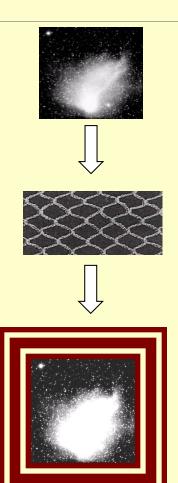
$$\boldsymbol{\Sigma}_{nxn} = \begin{pmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{12} & \cdots & \boldsymbol{\sigma}_{1n} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} & \cdots & \boldsymbol{\sigma}_{21} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\sigma}_{n1} & \boldsymbol{\sigma}_{n2} & \cdots & \boldsymbol{\sigma}_{nn} \end{pmatrix}_{nxn}$$

Primary Goal of Applied Statistics

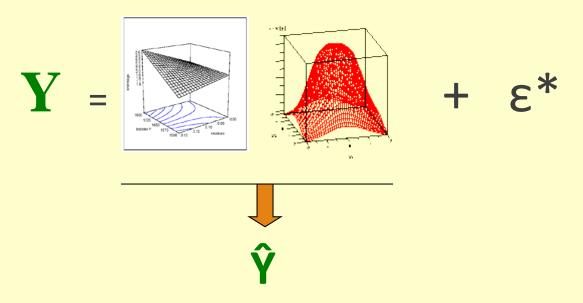
Use observed Y values together with scientific knowledge

to create a statistical model

and obtain accurate predictions (\hat{Y}) of unobserved Y values



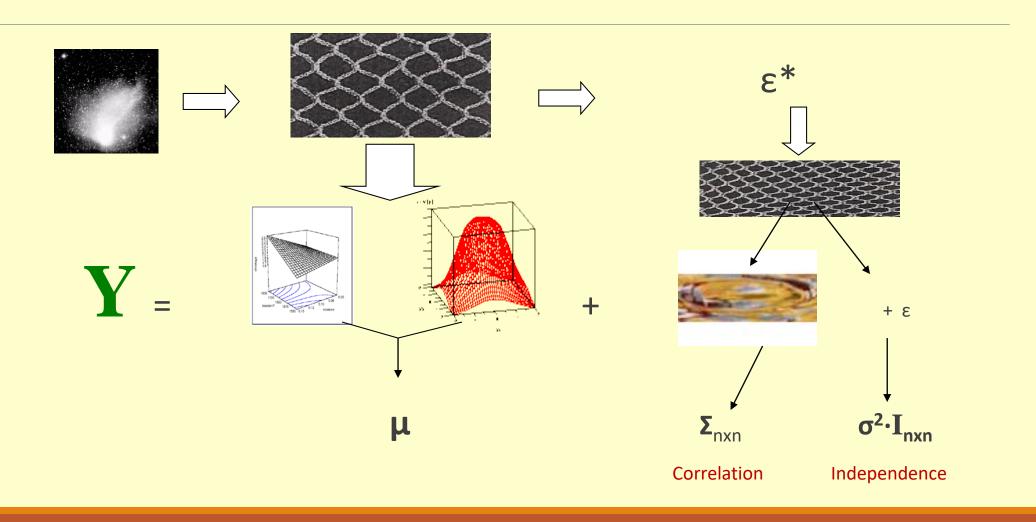
To Predict Y: First Model "Large-Scale" Trends



where

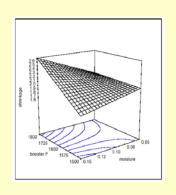
- Y is predicted by fitting a 'large-scale' trend to the observed data.
- ϵ^* is data variability remaining after the model is fit.

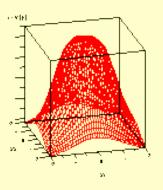
Refine the Model to Predict Y Model 'Small-Scale' Variability



Decomposing the Data Variability ANOVA Terminology

Large-Scale





Fixed Effects

Means

- Deterministic Functions
- Regressors(Covariates)
- Treatments

Small-Scale

All 'residual' variation

(eg., a raindrop on water surface)

Random Effects

Variance Components

- Variances
- Covariances/Correlations

Various Ways to Write Components of the General Linear Model (GLM)

Υ	=	Large-Scale Variation	+	Small-Scale Variation
Υ	=	Fixed Effects	+	Random Effects
Υ	=	Mean &/or Covariates	+	Variances & Covariances
Y _{nx1}	=	$\mathbf{X}_{nxp} \cdot \mathbf{\beta}_{px1}$	+	ε _{nx1}
Y _{nx1}	=	μ _{nx1}	+	ε _{nx1}
Y _{nx1}	=	ŷ _{nx1}	+	ε _{nx1}

The General Linear Model (GLM) Assumptions – the i.i.d. Mantra


```
Observed Data - Model Prediction = Model Error

\mathbf{y}_{nx1} - \mathbf{\hat{y}}_{nx1} = \mathbf{\epsilon}_{nx1}
```

Classical GLM assumptions: ε_i are *i.i.d.*

```
\varepsilon_i \sim \text{Normal}(0, \sigma_{\varepsilon}^2)
```

- independent (No correlation among the n data values)
- identically distributed

What is the "Covariance Structure" for your Specific Model?

It is seldom true that each different pair of repeated measurements has a different covariance than any other pair.

Typically, there is a simpler "pattern" of covariance.

$$\Sigma_{nxn} = \begin{pmatrix} \sigma_{\varepsilon}^{2} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{\varepsilon}^{2} & \cdots & \sigma_{21} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{\varepsilon}^{2} \end{pmatrix}_{nxn}$$

What is the "Covariance Structure" for your Specific Model?

Repeated measurements on the same subject

typically share some covariance

These will not be zero

Modeling this diagonal (independence)

"covariance structure"

will produce incorrect

hypothesis test results

Enamerole
$$\Sigma_{nxn} = \sigma_{\varepsilon}^{2} \cdot I_{nxn} = \begin{bmatrix} \sigma_{\varepsilon}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{\varepsilon}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{\varepsilon}^{2} \end{bmatrix}$$

for Multiple Measurements on Same Subject

All pairs of measurements are equally correlated

Compound Symmetry

In SAS: Type= CS

$$\Sigma_{4x4} = \begin{pmatrix} \sigma_{\varepsilon}^{2} + \sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{\varepsilon}^{2} + \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma_{\varepsilon}^{2} + \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma_{\varepsilon}^{2} + \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma_{\varepsilon}^{2} + \sigma_{1} \end{pmatrix}_{4x4}$$

for Multiple Measurements on Same Subject

Covariance between pairs of measurements is a function of their distance (in time)

Equi-Distant Times: 1 2 3 4

Toeplitz

In SAS: Type= TOEP

$$\Sigma_{4x4} = \begin{pmatrix} \sigma_{\varepsilon}^2 & \sigma_1 & \sigma_2 & \sigma_3 \\ \sigma_1 & \sigma_{\varepsilon}^2 & \sigma_1 & \sigma_2 \\ \sigma_2 & \sigma_1 & \sigma_{\varepsilon}^2 & \sigma_1 \\ \sigma_3 & \sigma_2 & \sigma_1 & \sigma_{\varepsilon}^2 \end{pmatrix}_{4x4}$$

for Multiple Measurements on Same Subject

Covariance between pairs of measurements

is a *specific* [ρ] *function* of their distance (in time)

Equi-Distant Times: 1 2 3

In SAS: Type= AR(1)

for Multiple Measurements on Same Subject

When time measurements NOT EQUALLY SPACED use

1st-Order Ante-Dependence

Type=ANTE(1)

or

Spatial Exponential

Type=SP(EXP)

for Multiple Measurements on Same Subject

When variances are heterogeneous

(i.e., different magnitudes) across times

SAS Proc MIXED

Covariance Structures include:

Type= CSH, TOEPH, ARH(1)

$$\Sigma_{4x4} = \begin{pmatrix} \sigma_1^2 & ? & ? & ? \\ ? & \sigma_2^2 & ? & ? \\ ? & ? & \sigma_3^2 & ? \\ ? & ? & \sigma_3^2 & ? \\ ? & ? & ? & \sigma_4^2 \end{pmatrix}_{4x4}$$

How Do I Check that the Chosen Covariance Structure Fits my Data Well?

- 1) Likelihood Ratio Test significance indicates chosen Covariance Structure fits data better than "independence" (i.e., diagonal)
- 2) Smallest value for AICC fit statistic
 - -indicates "best" fit

Each <u>Cow</u>receives 1 of 4 Treatments and is Measured on Days 3, 6, 9 and 21

Experiment Layout:																	
	(IA=0, SC=20)		(IA=20, SC=20)			(IA=20, SC=0)			(IA=0, SC=0)								
Whole- Factor(C		1	8	10	15	2	7	9	16	3	5	12	14	4	6	11	13
Subplot Factor (Days)	3 6 9 21	258 251 245 242	192 185 183 181	234 233 228 219	237		152 148 144 139	186	219225	260 255 245 249		224 217 209 201	196 190	269 258 249 253	196 191 181 195		

Covariance Structure [General Notation]

for 4 Repeated Measurements (Days 3, 6, 9, 21) on each Cow (k)

$$R_{k} = \begin{bmatrix} \sigma_{cow}^{2} + \sigma_{day3(cow)}^{2} & \sigma_{cow}^{2} + \sigma_{(day3,day4)(cow)} & \sigma_{cow}^{2} + \sigma_{(day3,day9)(cow)} & \sigma_{cow}^{2} + \sigma_{(day3,day21)(cow)} \\ \sigma_{cow}^{2} + \sigma_{(day4,day3)(cow)} & \sigma_{cow}^{2} + \sigma_{day4(cow)}^{2} & \sigma_{cow}^{2} + \sigma_{(day4,day9)(cow)} & \sigma_{cow}^{2} + \sigma_{(day4,day21)(cow)} \\ \sigma_{cow}^{2} + \sigma_{(day9,day3)(cow)} & \sigma_{cow}^{2} + \sigma_{(day9,day4)(cow)} & \sigma_{cow}^{2} + \sigma_{day9(cow)}^{2} & \sigma_{cow}^{2} + \sigma_{(day9,day21)(cow)} \\ \sigma_{cow}^{2} + \sigma_{(day21,day3)(cow)} & \sigma_{cow}^{2} + \sigma_{(day21,day4)(cow)} & \sigma_{cow}^{2} + \sigma_{(day21,day3)(cow)} & \sigma_{cow}^{2} + \sigma_{(day21,day3)(cow)} & \sigma_{cow}^{2} + \sigma_{(day21,day3)(cow)} \end{bmatrix}$$

Goodness-of-Fit Summary Which Covariance Structure Fit the Data Best?

Chosen	Type= Proc Mixed Repeated Statement	Covariance Structure	AICC Fit Statistic	# of Covariance Parameters Estimated			
	un	Unstructured	407.2	10			
	vc or simple	Variance Components (Independence)	492.2	1			
	cs	Compound Symmetry	444.4	2			
	csh	Heterogeneous Compound Symmetry	449.6	5			
	ante(1)	1 st -Order Ante-Dependence	401.5	7			
٧	sp(exp)	Spatial Exponential	411.5	2			

Two Covariance Parameters Estimated by SP(exp)

Cov Parm	Subject	Estimate
$\sigma^2_{sp(exp)(Day)}$	cow(ia*sc)	92.88
σ^2_{Resid}		1033.64

The values in each element of a cow's covariance matrix is calculated by plugging the above 2 estimates into the below formula.

Cov (Day_i , Day_j) =
$$\sigma^2_{Resid}$$
 ·(exp[-D(i , j) / $\sigma^2_{sp(Exp)(Day)}$]) where D(i, j) = |i-j| and i, j = 3, 6, 9, or 21

Estimated SP(exp) Covariance Structure

for each Cow

$$\mathbf{R}_{k \, 4x4} = \mathbf{C}_{4x4} = \begin{bmatrix} \text{Day 3} & \text{Day 6} & \text{Day 9} & \text{Day 21} \\ \text{Day 6} & e^{-3/92.88} & e^{-6/92.88} & e^{-18/92.88} \\ \text{Day 9} & e^{-3/92.88} & 1 & e^{-3/92.88} & e^{-15/92.88} \\ \text{Day 21} & e^{-18/92.88} & e^{-15/92.88} & e^{-12/92.88} & 1 \end{bmatrix}_{4x4}$$

Note: $\sigma_{residual}^2$ = 1033.64 has been factored out.

Exponent: Numerator = Day difference. Denominator = $\sigma_{sp(Exp)(Day)}^2$ = 92.88

Estimated SP(exp) Covariance Structure

for each Cow



The numeric estimate illustrate how measurements at two times share less covariance when there is greater time between measurements.

The Model's Covariance Matrix has an 4x4 SP(exp) Covariance on the Diagonal for each Cow

$$Var(Y_{64x1})_{64x64} = R_{64x64} = \begin{pmatrix} C_{4x4} & 0_{4x4} & \cdots & 0_{4x4} \\ 0_{4x4} & C_{4x4} & \cdots & 0_{4x4} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{4x4} & 0_{4x4} & \cdots & C_{4x4} \end{pmatrix}_{64x64}$$

Measurements on different cows are independent; indicated by zero covariance.